Jagjeet Singh ${ }^{1}$, Summon Koul ${ }^{1, \text { la }}$, Ajay P. S. Pannu ${ }^{2}$, Rattan L. Sharma ${ }^{1}$ and Tej K. Razdan *1
${ }^{1}$ Department of Chemistry, University of Jammu, Ambedkar Road, Jammu-180006, India.
${ }^{1 a}$ Present address : Advinus Therapeutics, International Bio-Tech Park, Genesis Squre, Hinjewadi, Pune-41 1057
${ }^{2}$ Department of Chemistry, G. N. D. University, Amritsar, Punjab 154003, India. Received March 29, 2007

Abstract

4-Aryl-5-carboethoxy-6-methyl-2,3-dihydro-2-pyridones were obtained, in high yield, by heating ternary mixtures of appropriate aldehydes, ethylacetoacetate and compounds possessing $\mathrm{NH}_{2}-\mathrm{C}=\mathrm{X}$ functionality, in presence of immobilized $\mathrm{Bi}($ III $)$ nitrate and co-catalyst $\mathrm{Zn}(\mathrm{II})$ chloride, under solventless conditions. The reaction proceeds smoothly at $140 \pm 5^{\circ} \mathrm{C}$ and seems to involve double Michael addition-azaannulation.

J. Heterocyclic Chem., 45, 349 (2008).

INTRODUCTION

2-Pyridones and their partially or fully reduced forms constitute the core nucleus of several naturally occurring products [1]. The compounds derived from these nuclei exhibit a wide spectrum of pharmacodynamic properties, such as anti-microbial [2], antifungal [3], and angiotensin converting enzyme inhibiting [4] properties. Some of the compounds inhibit DNA enzymes [5] and a few other products have become potential candidates for anti-tumor [6] and anti-viral [7] therapy. A majority of these products are useful psychotherapeutic agents [8]. Therefore, the synthesis of 2-pyridone derivatives continues to be a subject of great interest. Several methodologies [9], mostly involving oxidation of pyridinium salts [10], Dieckmann-like [11] and Knoevengel's, reactions [12], have been documented for the synthesis of 2-pyridones. Most of these methodologies suffer with one or the other drawback, such as multi-step laborious processes, involvement of stringent or environmentally hazardous reaction conditions, expensive rare-earth catalysts, sometimes in stoichiometric amounts, and low to moderate yield of products. Furthermore, little attention has been paid to the direct synthesis of dihydro-2pyridone derivatives. This together with our interest in the exploration of the catalyst potential of the readily available, inexpensive, biocompatible and non-toxic $\mathrm{Bi}(\mathrm{III})$ nitrate in the synthesis of nitrogen heterocycles prompted us to undertake the synthesis of 3,4-dihydro-2-pyridones, using $\mathrm{Bi}(\mathrm{III})$ nitrate immobilized on neutral alumina as catalyst. Herein, we report an
efficient, one-pot solid-supported straight forward and environmentally benign synthesis of these products from aryl aldehydes, using catalyst Bi (III) nitrate, immobilized on neutral alumina, in the presence of cocatalyst Zn (II) chloride.

RESULTS AND DISCUSSION

4-Aryl-5-carboethoxy-6-methyl-3,4-dihydro-2-pyridones were synthesized from appropriate aryl aldehyde $\mathbf{1 a} \mathbf{- 1 m}$, ethylacetoacetate 2 and urea 3a, in the presence of the catalyst $\mathrm{Bi}(\mathrm{III})$ nitrate, immobilized on neutral alumina, and co-catalyst $\mathrm{Zn}(\mathrm{II})$ chloride. Earlier [13], $\mathrm{Bi}(\mathrm{III})$ nitrate, immobilized on alumina, has been found to efficiently catalyze the Michael addition under solventless conditions. This led us to presume that in the presence of immobilized $\mathrm{Bi}(\mathrm{III})$ nitrate an aldehyde and ethylacetoacetate ($1: 2$ moles) may form 1,5-diketones, via aldol condensation and Michael addition, which on subsequent regiospecific, aza-annulation may lead to target compounds. However, this hypothesis failed when ternary mixtures of arylaldehydes, ethylacetoacetate, urea (1:2:1 mole) and the catalyst $10 \%(w / w) ~ B i(I I I)$ nitrate on $\mathrm{Al}_{2} \mathrm{O}_{3}$, were heated, at $140 \pm 5^{\circ} \mathrm{C}$, under solvent less conditions. These reactions afforded mainly 4-aryl-5-carboethoxy-6-methyl-1,4-dihydropyrimidones [11]. Therefore, it occurred to us that it may be possible to divert the preferential Michael addition with urea by catalyst manipulation, using a co-catalyst with relatively higher activity than $\mathrm{Bi}(\mathrm{III})$ nitrate. Since, our primary goal has been to make use of inexpensive and biocompatible
metal salts, we chose Zn (II) chloride as co-catalyst. The catalyst was prepared by adsorbing $\operatorname{Bi}(\mathrm{III})$ nitrate (10% w / w) on neutral alumina and impregnating the activated $\mathrm{Bi}(\mathrm{III})$ nitrate $-\mathrm{Al}_{2} \mathrm{O}_{3}$ mixture, with co-catalyst $\mathrm{Zn}(\mathrm{II})$ chloride ($5 \% \mathrm{w} / \mathrm{w}$). The heterocatalyst mixture was activated, at $110 \pm 5^{\circ} \mathrm{C}$, for 4 hours, in a thermostatically controlled hot-air oven. The catalyst mixture was reactivated at the same temperature, each time before use.

Compounds $\mathbf{4 a - 4 m}$ were obtained by heating, at $140 \pm$ $5{ }^{\circ} \mathrm{C}$, the ternary mixtures of aryl aldehyde $\mathbf{1 a - 1 m}$, ethylacetoacetate 2 and urea 3a (1:2:1 mole) in the presence of the heterocatalyst mixture $\mathrm{Bi}(\mathrm{III})$ nitrate$\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Zn}$ (II) chloride, in proportion of the mass of substrates (calc. conc. of $\mathrm{Bi}(\mathrm{III})$ and $\mathrm{Zn}(\mathrm{II})$ ions approx. 5 $\mathrm{mol} . \%$ and $2.5 \mathrm{~mol} . \%$), in thermostatically controlled hot-air oven. The reaction was monitored by tlc of the chloroform extract of the aliquots drawn out, from a simultaneously run separate experimental vessel, at 0.5 hour intervals. On completion of the reaction ($4-5 \mathrm{hrs}$), the products were isolated with hot chloroform, the solvent was removed and the compounds were purified by column chromatography on silica gel, using graded solvent systems. Two products $\mathbf{4 a - 4 m}(52-69 \%)$ and $\mathbf{5 a}$ $\mathbf{5 m}(21-40 \%)$ were obtained (Table 1). The products were analyzed by spectral methods viz. HRMS, IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, ${ }^{13} \mathrm{C}$-NMR and DEPT- 135°. The products $\mathbf{5 a - 5 m}$ were found to be 4-aryl-5-carboethoxy-6-methyl-1,4-dihydropyrimidones and their identity was further confirmed by their co-tlc and mixed mp , with the authentic samples available to us, and the literature [11].

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{4 a - 4 m}$ displayed characteristic resonance signals at $\delta 1.16 \quad(\mathrm{t}, \quad \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{3}\right), 2.30(\mathrm{dd}, \mathrm{J}=14.2,3.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-3$), 4.01 ($\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2}$), 4.23 (d, J=3.2 $\mathrm{Hz}, \mathrm{H}-4), 5.26$ (s br, $1 \mathrm{H}, \mathrm{NH}$), besides the expected aromatic proton signals. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ signals were assigned on the basis of DEPT 135°. The mass fragmentation was consistent with the assigned structures, with molecular ion peak as the base peak and major peaks arising out of loss of ethyl radical, carbon monoxide and arylimine.

The structures of $\mathbf{4 a} \mathbf{- 4 m}$ were further confirmed by the X-ray analysis of $\mathbf{4 e}$, as a representative compound, and comparison of their spectral data with $\mathbf{4 e}$. Compound $\mathbf{4 e}$ crystallized in triclinic forms with cell dimensions: $\mathrm{a}=$ $7.685 \AA, b=8.232 \AA, c=11.846 \AA$ and $\alpha=92.8, \beta=$ $100.1, \gamma=108.5$ (Table 3). The ORTEP diagram of $\mathbf{4 e}$ is given in Fig. 1 the X-ray data of the compound has been tabulated in Table 3-6. The 2-pyridone nucleus assumes a quasi chair conformation with bond angles $\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{N}_{1}$ 115.7, $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}, 127.1 ; \mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4} ; 190.0^{\circ}$ and $\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{N}_{1}$, 120.4°.

To generalize this reaction we carried out the reactions of aldehydes $\mathbf{1 a - 1 m}$, ethylacetoacetate $\mathbf{2}$ and the catalyst mixture with acetamide $\mathbf{3 b}$, benzamide $\mathbf{3 c}$, buiret $\mathbf{3 d}$ and semicarbazide 3e, at $140 \pm 5^{\circ} \mathrm{C}$. Except for the reaction with $\mathbf{3 e}$, which yielded multi-component mixtures and were not analyzed, all other reactions afforded mainly 3,4-dihydro-2-pyridones ($62-82 \%$) (Table 2). The reaction with $\mathbf{3 c}$ also formed benzoic acid as a minor product.

Scheme I

Although, the exact role of co-catalyst Zn (II) chloride is not well understood its necessity in the formation of $3,4-$ dihydro-2-pyridones was evident from the fact that in its absence, the reactions of $\mathbf{1 a}, \mathbf{2}$ and $\mathbf{3}$, catalyzed by $\mathrm{Bi}(\mathrm{III})$ nitrate- $\mathrm{Al}_{2} \mathrm{O}_{3}$, led to the formation of 4-aryl-5-carbo-ethoxy-6-methyl-1,4-dihydropyrimidones as the main product. Also, the same products were obtained when ZnCl_{2}, immobilized on neutral alumina was used as a catalyst, in the absence of $\mathrm{Bi}(\mathrm{III})$ nitrate.

Mechanistically, the reaction of arylaldehyde, ethylacetoacetate and compounds possessing $\mathrm{NH}_{2}-\mathrm{C}=\mathrm{X}$ group may be rationalized as to involve Aldol condensation followed by Michael addition and subsequent aza-annulation with amines (Scheme 3) to form azetidine intermediate, on one side, and pyrimidone, on the other. The intermediate azetidine, most probably, undergoes Zn (II) mediated rearrangement to form thermodynamically more stable conjugate imine.

Table 1
Percentage yield of $\mathbf{4 a - 4 m}$ and $\mathbf{5 a - 5 m}$ using urea.

Product	yield percent	Microwave yield\%	Time	Product	yield percent	Microwave yield \%
4a	66	68	10	5a	20	15
4b	67	72	10	5b	30	20
4c	65	68	12	5c	28	18
4d	69	74	13	5d	28	18
4e	58	63	15	5e	40	25
4 f	56	64	14	5f	40	35
4 g	58	62	13	5g	40	30
4h	60	60	13	5h	38	20
4i	58	64	12	5i	33	25
4j	68	71	14	5j	21	20
4k	52	66	15	5k	36	26
41	67	64	10	51	31	25
4m	66	63	14	5m	30	20

Scheme II

4a-4m
(79-88\%)

Table 2
Percentage yield of $\mathbf{4 a} \mathbf{- 4 m}$ using $\mathbf{3 b} \mathbf{- 3 d}$.

Compound	$\mathbf{3 b}$	$\mathbf{3 c}$	$\mathbf{3 d}$
$\mathbf{4 a}$	82	72	81
$\mathbf{4 b}$	85	80	84
$\mathbf{4 c}$	80	76	71
$\mathbf{4 d}$	80	80	76
$\mathbf{4 e}$	76	70	66
$\mathbf{4}$	60	55	32
$\mathbf{4} \mathbf{g}$	79	80	75
$\mathbf{4} \mathbf{~}$	77	69	71
$\mathbf{4 i}$	62	54	49
$\mathbf{4 j}$	80	70	85
$\mathbf{4 k}$	79	68	72
$\mathbf{4 l}$	70	60	62
$\mathbf{4 m}$	62	58	66

Subsequent, conjugate addition by six-membered enolised ester $\mathrm{Bi}(\mathrm{III})$ complex and regiospecific aza-annulation may lead to the formation of 3-acetyl-4-aryl-5-carboeth-oxy-6-methyl-3,4-dihydropyridine-2-one which on further hydrolytic disproportionation via an enolate ion may form 4-aryl-5-carboethoxy-6-methyl-3,4-dihydro-pyridine-2-one.

The reaction is temperature dependent with the optimum temperature being $140 \pm 5^{\circ} \mathrm{C}$. We have also optimized the concentration of $\mathrm{Bi}($ III) nitrate and Zn (II) chloride on neutral
alumina and found that 10% (w/w) $\operatorname{Bi}($ III) nitrate and $5 \%(\mathrm{w} / \mathrm{w}) \mathrm{Zn}($ II $)$ chloride on neutral alumina showed the best performance, when the heterocatalyst mixture was used in proportion by weight of the substrates such that the approximate concentration of $\mathrm{Bi}($ III $)$ nitrate and Zn (II) chloride remained within 10 mole percent and 5 mole percent, respectively.
Since, the application of microwave irradiation is becoming increasingly popular in carrying out solventless thermal

Scheme III

Figure 1. ORTEP diagram of $\mathbf{4 e}$.
reactions, we repeated the reactions of $\mathbf{1 a - 1 d}, \mathbf{2}, \mathbf{3 a}$ and the catalyst in domestic microwave (4.250 MHz) using Makhopadyay et.al's procedure [14]. The reactions were complete within 10-20 mins without any appreciable increase in the percentage yield (Table 1).

We have devised a simple, straight forward, costeffective one-pot solventless methodology for the preparation of 4-aryl-5-carboethoxy-6-methyl-3,4-dihydro-2-pyridones from aldehydes, ethylacetoacetate and urea derivatives using a heterocatalyst mixture of $\mathrm{Bi}(\mathrm{III})$ nitrate $-\mathrm{Zn}(\mathrm{II})$ chloride $-\mathrm{Al}_{2} \mathrm{O}_{3}$. The reaction seems to proceed via a cascade sequence of reactions involving double Michael addition and aza-annulation. The reaction shows high functional group tolerance and does not affect the sensitive functionalities like nitrilo and nitro group. The added advantage of this methodology is the nontoxicity and biocompatibility of the catalyst mixture.

EXPERIMENTAL

General. IR spectra were measured on KBr discs using a Perkin Elmer R X 1-FTI R instrument. ${ }^{1} \mathrm{H}$-NMR spectra were measured using Varian Gemini-200 (200 MHz) and JEOL-FT-NMR-AL (300 MHz). ${ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT 135° spectra were measured on JEOL-FT-NMR-300 (75.45 MHz). HRMS were recorded on JEOL mass spectrometer. Mp's were determined with Metler FP-82 hot stage apparatus and are uncorrected.

Column chromatography was carried out on silica gel (Sisco Research Lab. 60-120 mesh). TLC was done on silica gel G (Sisco Research Lab) plates.

Preparation of Catalyst Mixture. Bi(III) nitrate ($10 \% \mathrm{w} / \mathrm{w}$, $5 \mathrm{~g})$ in hot $\mathrm{MeOH}-\mathrm{Me}_{2} \mathrm{CO}(1: 1 \mathrm{v} / \mathrm{v}, 100 \mathrm{~mL})$ was added to neutral alumina (45 gm) and the mixture stirred for 24 hr . at room temperature. The solvent was removed under reduced pressure and the residue was activated at $110 \pm 5^{\circ} \mathrm{C}$ for 8 hr ., in a thermostatically controlled hot-air oven. The activated mixture was cooled in a desiccator. To this mixture Zn (II) chloride (5% $\mathrm{w} / \mathrm{w} ; 2.5 \mathrm{~g}$) in dry acetone (100 mL) was added and the mixture was again stirred for 6 hrs at room temperature under anhydrous conditions. After removing the solvent, under pressure, the catalyst mixture was again activated at $110 \pm 5^{\circ} \mathrm{C}$ for 10 hr . The catalyst mixture was preserved in a desiccators and reactivated at $110 \pm 5^{\circ} \mathrm{C}$, for 2 hr , each time before use.

General Procedure for the preparation of 3,4-dihydro-2pyridones. The aldehydes $\mathbf{1 a - 1 m}\left(1 \times 10^{-3}\right.$ moles), ethylacetoacetate (2×10^{-3} moles) and compounds possessing $\mathrm{NH}_{2}-\mathrm{C}=\mathrm{X}, v i z$ urea, $\quad \mathrm{CH}_{3} \mathrm{CONH}_{2}, \quad \mathrm{PhCONH}_{2}, \quad \mathrm{NH}_{2} \mathrm{CO} . \mathrm{NH} . \mathrm{CONH}_{2}$ and NH_{2}. NH.CO. $\mathrm{NH}_{2}\left(1 \times 10^{-3}\right.$ moles) were mixed with the catalyst, in proportion by the mass of substrates, and stirred mechanically for 1 hr . The reaction mixture was heated at $140 \pm 5{ }^{\circ} \mathrm{C}$ in a thermostatically controlled hot-air oven. To monitor the reactions by tlc separate experiments were simultaneously conducted. Aliquots were drawn out at 0.5 hr intervals and reaction was monitored by comparative tlc of the chloroform extracts, using pet. ether-chloroform graded solvent system. On completion of the reaction (4-5 hr) the products were isolated with hot CHCl_{3} in a soxhlet extractor. The organic layer was washed with water, 1 M
$\mathrm{NH}_{4} \mathrm{OH}$ and water. The organic layer was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and purified by column chromatography, using pet. ether- CHCl_{3} graded solvent systems. The products were crystallized from CHCl_{3}-pet. ether ($\mathrm{bp} 40^{\circ}-60^{\circ} \mathrm{C}$).

5-Carboethoxy-6-methyl-4-phenyl-3,4-dihydro-pyridine-2one (4a). Colorless crystals, mp. 102-103 ${ }^{\circ} \mathrm{C}$. IR: $\mathrm{v}_{\max } 3117,2969$, $1724,1648,1466,1420,1386,1290,1222,1091,1028,782 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.16(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 2.17(3 \mathrm{H}, \mathrm{s})$, $2.37(2 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}), 6.07(1 \mathrm{H}, \mathrm{s} \mathrm{br}$, NH), 7.10-7.46 (5H, m). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta c 13.7,17.5,43.5$, $54.3,59.9,110.3,120.8,125.7,127.9,128.4,139.5,165.6,171.3$. HRMS: m/z (rel. int.) $259.1216\left(\mathrm{M}^{+}\right)$(calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$, 259.1209) (100), 231(30), 217(60), 203(36), 189(38), 159(55), 145(54), 104(26), 77(87). Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 69.48 ; \mathrm{H}$, 6.60 ; N, 5.40 .Found: C, 69.49 ; H, 6.62 ; N, 5.39.

5-Carboethoxy-6-methyl-4-(4-methoxy)phenyl-3,4-dihydro-pyridin-2-one (4b). Colorless crystals, mp 137-138 ${ }^{\circ} \mathrm{C}$. IR: $\boldsymbol{v}_{\text {max }}$ 2995, 2874, 2265, 1685, 1578, 1510, 1445, 1410, 1340, 1305, 1285, 1040 1017, $866 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.09$ $(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.87(1 \mathrm{H}, \mathrm{s}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.40(2 \mathrm{H}, \mathrm{dd}, J=$ $1.4,3.7 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.93 \mathrm{~m}(1 \mathrm{H}, \mathrm{d}, J=3.7,1.7 \mathrm{~Hz}), 3.98$ $(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.7$ Hz). ${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta c 18.6,24.1,40.6,55.3,60.0,101.5$, 109.5, 109.7, 118.6, 136.3, 148.3, 153.3, 165.7. MS : m/z (rel. int.) $289.1323\left(\mathrm{M}^{+}\right)$(calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}, 289.1315$) (100), 274(34), 261(47), 247(59), 233(33), 189(52), 175(50), 134(42), 107(69), 92(49). Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{C}, 66.42$; $\mathrm{H}, 6.61$; N, 4.84. Found: C, 66.41 ; H, 6.62; N, 4.83.

5-Carboethoxy-6-methyl-4(4-chloro)phenyl-3,4-dihydro-pyridin-2-one (4c). Colorless crystals, mp. $178-179^{\circ} \mathrm{C}$. IR: $v_{\text {max }}$ 3001, 2875, 2776, 2250, 1695, 1628, 1570, 1530, 1510, 1445, 1366, 1340, 1290, 1060, 1017, $960 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.19(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 2.13(3 \mathrm{H}, \mathrm{s}), 2.39(2 \mathrm{H}$, d, $J=3.1 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 4.20(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz})$, $5.80(1 \mathrm{H}, \mathrm{s} \mathrm{br}), 7.44(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}), 7.75(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta c 14.5,19.6,43.2,53.1,60.0,101.1$, 121.2, 127.6, 133.5, 137.3, 148.0, 148.7, 154.5, 154.6, 165.3. MS: m/z (rel. int.) 293.0892, 295.0798 (M^{+}) (Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{3}, 293.0819,295.0789\right)$, 275(36), 273(28), 265(39), 253(36), 251(68), 223(46), 237(67), 179(55), 138(16), 112(72), 77(48). Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{3}$: C, 61.33 ; H, 5.49 ; N, 4.76. Found: C, $66.41 ;$ H, $5.52 ;$ N, 4.78.

5-Carboethoxy-6-methyl-4(3,4-dimethoxy)phenyl-3,4-dihydro-pyridin-2-one (4d). Colorless crystals, $\mathrm{mp} 112-113^{\circ} \mathrm{C}$. IR: $\mathrm{v}_{\text {max }}$ 3174, 2973, 2603, 2265, 1699, 1605, 1578,1515, 1445, 1340, 1305, 1278, 1210, 1160, 1017, $984 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ $1.20(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.34(3 \mathrm{H}, \mathrm{s}), 2.58(2 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 3.62$ $(3 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.85(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 4.07(2 \mathrm{H}, \mathrm{q}, J=7.1$ $\mathrm{Hz}), 5.90(1 \mathrm{H}, \mathrm{s}$ br), $6.67(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta c 14.1,18.6$, $20.6,40.3,55.3,55.8,60.0,101.5,109.8,111.0,118.6,136.3$, 148.6, 148.9, 153.4, 165.7. MS: m/z (rel. int) 319.1432 (M^{+}) (Calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5} 319.1420$), 281(23), 277(63), 263(42), 249(38), 219(55), 205(62), 164(59), 77(76). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}: \mathrm{C}$, 63.93 ; H, 6.62 ;N, 4.38. Found: C, 63.95; H, 6.64; N, 4.39.

5-Carboethoxy-6-methyl-4-(2-chloro)phenyl-3,4-dihydro-pyridin-2-one (4e). Colorless crystal, mp $154-155^{\circ} \mathrm{C}$. IR: $v_{\text {max }}$ 3244, 3117, 2969, 1700, 1648, 1599, 1466, 1420, 1386, 1313, 1290, 1222, 1091, 1028, 782. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): ~ \delta$ $1.05(3 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 2.42(3 \mathrm{H}, \mathrm{s}), 2.74(2 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz})$, $3.97(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 3.99(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{s}$ br), $7.21(1 \mathrm{H}, \mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{m}), 7.39(1 \mathrm{H}, \mathrm{dd}, J$
$\left.=7.2,3.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{s}\right),\left(\mathrm{CDCl}_{3}\right) \delta c 14.6,18.9,45.8,57.2$, $61.2,109.5,121.2,133.5,136.5,146.9,147.6,148.0,155.3$, 155.7. MS: m/z (rel. int.) 295.0786, 293.0812 (M^{+}) (Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{3}, 295.0789,293.0819\right)(100), 267(52), 265(68)$, 252(57), 237(35), 223(42), 193(58), 179(56), 138(42), 112(44), 77(82). Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{3}$: C, 61.33; $\mathrm{H}, 5.49$; N , 4.76.Found: C, 61.35 ; H, 5.51 ; N, 4.75 .

5-Carboethoxy-6-methyl-4-(2-hydroxy)phenyl-3,4-dihydro-pyridin-2-one (4f). Colorless crystals mp. 208-209 ${ }^{\circ} \mathrm{C}$. IR: $\mathrm{v}_{\text {max }}$ 3462, 3120, 2964, 2827, 1708, 1682, 1655, 1519, 1461, 1385, 1323, 1282, 1238, 1139, 1096, 1027, $866 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 $\mathrm{MHz}, \mathrm{DMSO}): ~ \delta 1.26(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{HZ}), 1.87(3 \mathrm{H}, \mathrm{s}), 2.37$ $(2 \mathrm{H}, \mathrm{s}), 3.12(2 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}), 4.30(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 6.07$ $(1 \mathrm{H}, \mathrm{s}$ br), $6.81(2 \mathrm{H}, \mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{m}), 7.22$ $(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta c 14.8,18.5,39.4,55.3$, $60.7,110.9,113.5,128.3,133.6,136.3,140.3,146.5,151.0$, 153.9, 165.3. MS: m/z (rel. int.) 275.1149 (${ }^{\dagger}$) (Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}, 275.1158$) 247(45), 233(62), 219(38), 205(37), 175(51), 151(53), 120(44), 93(76). Anal. calcd. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, 65.44 ; H, 6.22; N, 5.08. Found: C, 65.44 ; H, 6.20 ; N, 5.07.

5-(Carboethoxy)-4-(3,5-dichloro)phenyl-6-methyl-3,4-dihydro-pyridin-2-one ($\mathbf{4 g}$). Colorless crystals, $\mathrm{mp} 189-190^{\circ} \mathrm{C}$. IR: $\mathrm{v}_{\text {max }}$ 3100, 2965, 2830, 1700, 1682, 1658, 1510, 1467, 1385, 1323, 1282, 1236, 1140, 1096, 1030, 868 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , DMSO-d d_{6}): $\delta 1.19(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.30(2 \mathrm{H}, \mathrm{s}), 4.01(2 \mathrm{H}, \mathrm{q}, J=$ $7.1 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{s}$ br), $7.42(1 \mathrm{H}, \mathrm{d}, J=2.4$ $\mathrm{Hz}), 7.76(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-$ NMR (DMSO-d ${ }_{6}$): $\delta c 15.3,18.6,46.8,55.0,61.2,108.3,121.5$, 133.6, 142.2, 147.5, 148.0, 148.6, 152.3, 156.7, 165.5. MS: m/z (rel. int) $331.0458,327.0440\left(\mathrm{M}^{+}\right)\left(\mathrm{Cal}\right.$. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Cl}_{2}, 331.0450$, 327.0431) (100), 301(36), 299(39), 286(61), 272(35), 258(34), 228(48), 214(51), 173(36), 147(74). Anal. calcd for: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Cl}_{2}$: C, 54.89; H, 4.60; N, 4.26. Found: C, 54.87; H, 4.59; N, 4.27.

5-Carboethoxy-4-(4-fluorophenyl)-6-methyl-3,4-dihydro-pyridine-2-one ($\mathbf{4 h}$). Colorless crystals, $\mathrm{mp} 166-167^{\circ} \mathrm{C}$. IR: $v_{\max } 3000,2968,2845,1698,1660,1515,1475,1380,1326$, 1292, 1236, 1145, 1090, 1030, $865 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MH , $\left.\mathrm{CDCl}_{3}\right): \delta 1.21(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 2.50(3 \mathrm{H}, \mathrm{s}), 2.53(2 \mathrm{H}, \mathrm{dd}, J$ $=3.4,1.8 \mathrm{~Hz}), 4.13(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz})$, $5.60(1 \mathrm{H}, \mathrm{s} \mathrm{br}), 7.12(2 \mathrm{H}, \mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}), 7.62(2 \mathrm{H}, \mathrm{dd}, J=$ $8.6,2.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta c 14.9,18.6,50.8,53.1,61.2$, $98.9,115.1,128.1,128.2,140.9,146.5,159.9,166.5,165.8$. MS: m / z (rel. int.) 277.1125 (M^{+}) (Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}_{3}, 277.1114$) (100), 249(32), 221(66), 207(32), 177(67), 163(55), 122(63), 96(65), 77(72). Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}_{3}$: $\mathrm{C}, 64.97$; $\mathrm{H}, 5.81$; N, 5.05. Found: C, 64.96; H, 5.80; N, 5.07.

5-Carboethoxy-6-methyl-4(2-hydroxy-4-methoxy)phenyl-3,4-dihydropyridin-2-one (4i). Colourless solid mp 215-216 ${ }^{\circ}$ C. IR $v_{\text {max }} 3500,3047,3005,2846,1656,1600,1578,1511$, 1445, 1340, 1305, 1263, 1212, 1170, 1017, $984 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): \delta 1.02(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 2.0(3 \mathrm{H}, \mathrm{s})$, $2.46(2 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.92(5 \mathrm{H}, \mathrm{q}, \mathrm{d}, J=7.1,3.2$ $\mathrm{Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.84(1 \mathrm{H}$, d, $J=8.0 \mathrm{~Hz}$), $8.70\left(1 \mathrm{H}, \mathrm{s}\right.$ br), $9.12(1 \mathrm{H}, \mathrm{s}, \mathrm{br}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$): $\delta c 14.8,18.5,44.8,55.8,56.4,60.6,99.2,109.6$, 112.3, 119.2, 144.01, 148.5, 149.6, 153.7, 156.5, 166.8 MS : m/z (rel. int.) $305.1253\left(\mathrm{M}^{+}\right)$(Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}, 305.1265$), 277(28), 263(44), 261(58), 235(49), 233(52), 205(61), 191(52), 124(82), 110(61).Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}: \mathrm{C}, 62.94 ; \mathrm{H}, 6.27$; N, 4.58. Found: C, 62.95; H, 6.28; N, 4.57.

5-Carboethoxy-6-ethyl-4-(3,4-dioxymethylene)-phenyl-3,4-dihydropyridin-2-one (4j). Colorless crystals mp 137-138 ${ }^{\circ} \mathrm{C}$.

IR: $v_{\text {max }} 3060,3004,2837,1659,1598,1572,1446,1422,1336$, 1293, 1256, 1172, 1113, 1071, 1035, 1018, 828, $778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.19(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 2.34(3 \mathrm{H}$, s), $2.55(2 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 4.07(2 \mathrm{H}$, $\mathrm{q}, J=7.1 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{s}), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.18(1 \mathrm{H}$, dd, $J=8.6,2.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta c 16.5,19.8,51.2$, $53.4,60.2,101.1,102.5,112.5,114.8,118.6,137.6,149.9$, 149.1, 154.2, 165.3. MS: m/z (rel. int.) 303.1101 (M^{+}) (Calcd. for $\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}, 303.1107\right), \quad 275(49), 273(59), \quad 230(66), \quad 216(45)$, $211(35), 183(64), 175(56), 142(32)$. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}$: C, 63.35 ; H, 5.64 ; N, 4.61. Found: C, 63.34; H, 5.65; N, 4.60.
5-Carboethoxy-6-methyl-4-(4-cyano)phenyl-3,4-dihydro-pyridin-2-one (4k). Colorless crystals mp $168-169^{\circ} \mathrm{C}$. IR: $\boldsymbol{v}_{\text {max }}$ 3032, 3005, 2859, 1676, 1650, 1600, 1578, 1573, 1515 1490, 1447, 1340, 1305, 1260, 1212, 1170, 1017, $984 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.12(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 2.29(3 \mathrm{H}, \mathrm{s}), 2.66$ $(2 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 4.00(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{d}, J=3.5$ $\mathrm{Hz}), 7.63(2 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{~Hz}), 7.83(2 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{~Hz}), 5.63$ $\left(1 \mathrm{H}\right.$, s br). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta c 12.4,16.3,40.4,56.4,59.5$ $108.0,125.8,130.5,147.6,148.3,153.5,163.5 . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ (rel. int) $284.1172\left(\mathrm{M}^{+}\right)\left(\mathrm{Cal}\right.$. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ 284.1161), 256(20), 242(58), 228(42) 214(47), 170(58), 129(35), 103(68), 77(81). Anal. calcd. for : $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 67.59 ; \mathrm{H}, 5.67$; N, 9.85. Found : C, 67.58 ; H, 5.66; N, 9.84.

3-Carboethoxy-4-furfryl-6-methyl-3,4-dihydropyridin-2one (4 1). Colorless crystals mp 110-111 ${ }^{\circ} \mathrm{C}$. IR: $v_{\text {max }} 3227,3110$, 2973, 1698, 1645, 1499, 1454, 1381, 1300, 1292, 1151, 1100, $1014,927,799 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21(3 \mathrm{H}, \mathrm{t}, J$ $=7.1 \mathrm{~Hz}), 2.32(3 \mathrm{H}, \mathrm{s}), 2.82(2 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 4.13(2 \mathrm{H}, \mathrm{q}, J=$ $7.1 \mathrm{~Hz}), 5.44(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{s}$ br), $6.10(1 \mathrm{H}, \mathrm{d}, J$ $=1.9 \mathrm{~Hz}), 6.27(1 \mathrm{H}, \mathrm{dd}, J=0.9,1.7 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{dd}, J=1.7$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta c 15.6,19.4,42.5,60.8,63.2,99.6$, $107.3,130.5,131.1,133.4,143.4,153.1,166.7$. MS: m/z (rel. int.) $249.1012\left(\mathrm{M}^{+}\right)\left(\right.$Calc. for $\left.\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}, 249.1001\right)$, 221(46), 207(58), 193(47), 179(56), 149(68), 135(44), 94(33), 67(78). Anal. calcd. for; $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 62.64; H, 6.06; N, 5.61. Found: C, 62.62; H, 6.04; N, 5.59.

Table 3
Crystal data and structure refinement for $\mathbf{4 e}$

Identification code	$\mathbf{4 e}$
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{3}$
Formula weight	293.74
Temperature	$293(2) \mathrm{K}$
Wavelength	0.71069 A
Crystal system, space group	TRICLINIC, P-1
Unit cell dimensions	$\mathrm{a}=7.685(5) \mathrm{A}$ alpha $=92.800(5) \mathrm{deg}$.
	$\mathrm{b}=8.232(5) \mathrm{A}$ beta $=100.190(5) \mathrm{deg}$.
	$\mathrm{C}=11.846(5) \mathrm{A}$ gamma $=108.560(5) \mathrm{deg}$.
Volume	$694.8(7) \mathrm{A}^{\wedge} 3$
Z, Calculated density	$2,1.404 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.281 \mathrm{~mm} \wedge-1$
$\mathrm{~F}(000)$	308
Crystal size	$0.02 \mathrm{x} 0.02 \times 0.03 \mathrm{~mm}$
Theta range for data collection	1.76 to 25.50 deg.
Limiting indices	$0<=\mathrm{h}<=8,-9<=\mathrm{k}<=9,-14<=1<=14$
Reflections collected $/$ unique	$2706 / 2497[\mathrm{R}($ int $)=0.0251]$
Completeness to theta $=25.50$	96.4%
Absorption correction	None
Refinement method	$\mathrm{Full}-\mathrm{matrix}$ least-square on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$2497 / 0 / 181$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	0.978
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0612$, wR2 $=0.1818$
R indices (all data)	$\mathrm{R} 1=0.1054$, wR2 $=0.2089$
Largest diff. peak and hole	0.420 and -0.578 e. $\mathrm{A}^{\wedge}-3$

5-Carboethoxy-4(4-nitro)phenyl-6-methyl-3,4-dihydropyri-din-2-one ($\mathbf{4 m}$). Pale yellow crystals $m p 132-133^{\circ} \mathrm{C}$. IR: $v_{\text {max }} 3010$, 2876, 2825, 1690, 1672, 1656, 1530, 1460, 1385, 1325, 1285, 1238, 1140, 1090, 1025, $870 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.16(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.51(2 \mathrm{H}, \mathrm{dd}, J=3.6,1.8$ $\mathrm{Hz}), 3.32(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.01(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 7.51(2 \mathrm{H}$, $\mathrm{d}, J=8.7 \mathrm{~Hz}), 8.20(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta c$ 18.6, 19.1, 53.6, 53.7, 60.1, 109.4, 123.8, 127.9, 146.6, 148.9, 151.6, 153.2, 163.9. MS: m / z (rel. int.) 303.0969 (M^{+}) (Calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5}, 303.0981$), 275(46), 257(53), 247(58), 261(58), 233(37), 189(49), 148(56), 77(71). Anal. calcd .for : $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, $59.20 \mathrm{H}, 5.30 \mathrm{~N}, 9.20$. Found: C, 59.22 ; H, 5.26; N, 9.21 .

Table 4

Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{4 e} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{u}(\mathrm{eq})$
C (1)	4455 (5)	2457 (5)	9303 (3)	44 (1)
C (2)	3983 (4)	802 (4)	8902 (3)	27 (1)
C (3)	2135 (5)	-334 (5)	8283 (3)	39 (1)
C (4)	651 (5)	435 (5)	8519 (3)	38 (1)
C (5)	1133 (5)	2083 (5)	8940 (3)	41 (1)
C (6)	-161 (5)	3045 (5)	9154 (4)	57 (1)
C (7)	-1314 (5)	-686 (5)	8266 (3)	47 (1)
C (8)	-3419 (7)	-3471 (7)	7512 (5)	95 (2)
C (9)	-3509 (9)	-4853 (8)	6763 (6)	114 (2)
C (10)	2126 (5)	-595 (5)	7011 (3)	42 (1)
C (11)	2338 (6)	801 (6)	6358 (4)	60 (1)
C (12)	2435 (8)	651 (9)	5214 (4)	86 (2)
C (13)	2312 (8)	-917 (10)	4673 (5)	95 (2)
C (14)	2076 (7)	-2321 (8)	5287 (5)	80 (2)
C (15)	1985 (5)	-2163 (5)	6429 (4)	56 (1)
N(1)	2997 (4)	3102 (4)	9231 (4)	48 (1)
O (2)	-2661 (4)	-297 (4)	8406 (3)	67 (1)
O (3)	-1503 (4)	-2272 (4)	7835 (3)	66 (1)
O (1)	6055 (4)	3376 (4)	9741 (3)	63 (1)
Cl	1723 (2)	-3986 (2)	7139 (1)	82 (1)

Table 5

Bond lengths [A] and angles [deg.] for $\mathbf{4 e}$.

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.224(4)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$124.1(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.332(5)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$120.2(3)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.376(5)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$115.7(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.466(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$127.1(3)$
$\mathrm{C}(3)-\mathrm{C}(10)$	$1.510(5)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(10)$	$110.1(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.528(5)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$109.0(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.333(5)$	$\mathrm{C}(10)-\mathrm{C}(3)-\mathrm{C}(4)$	$112.4(3)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.468(5)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	$121.0(3)$
$\mathrm{C}(5)-\mathrm{N}(1)$	$1.381(5)$	$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(3)$	$120.8(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.500(5)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	$118.3(3)$
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.212(4)$	$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.4(3)$
$\mathrm{C}(7)-\mathrm{O}(3)$	$1.332(5)$	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$127.0(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.384(7)$	$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(4)$	$112.6(3)$
$\mathrm{C}(8)-\mathrm{O}(3)$	$1.458(5)$	$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(4)$	$121.3(4)$
$\mathrm{C}(10)-\mathrm{C}(15)$	$1.396(5)$	$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(3)$	$127.1(4)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.400(6)$	$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(3)$	$111.7(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.372(6)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(3)$	$110.6(4)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.381(8)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$116.3(4)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$119.8(4)$	
$\mathrm{C}(14)-\mathrm{C}(15)$	$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(12)$	$122.0(5)$	
$\mathrm{C}(15)-\mathrm{Cl}$	$1.375(8)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	$119.9(5)$
	$1.729(7)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{Cl}$	$119.5(5)$
	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{Cl}$	$120.4(5)$	
	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$117.9(5)$	
	$\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{C}(8)$	$120.9(3)$	
		$123.4(3)$	
		$115.9(3)$	

Symmetry transformation used to generate equivalent atoms:

Table 6
Anisotropic displacement parameters $\left(\mathrm{A}^{2} \times 10^{3}\right)$ for $\mathbf{4 e}$.
The anisotropic displacement factor exponent takes the form: $2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots \ldots .+2 \mathrm{hk} \mathrm{a}{ }^{*} \mathrm{~b}^{*} \mathrm{U} 12\right]$

U12	U11	U22	U33	U23	U13
$\mathrm{C}(1)$	$27(2)$	$54(2)$	$51(2)$	$-8(2)$	$6(2)$
$\mathrm{C}(2)$	$19(2)$	$34(2)$	$30(2)$	$-4(1)$	$2(1)$
$\mathrm{C}(3)$	$30(2)$	$39(2)$	$47(2)$	$-2(2)$	$9(2)$
$\mathrm{C}(4)$	$29(2)$	$45(2)$	$41(2)$	$-2(2)$	$7(2)$
$\mathrm{C}(5)$	$29(2)$	$48(2)$	$47(2)$	$-1(2)$	$8(2)$
$\mathrm{C}(6)$	$39(2)$	$56(2)$	$81(3)$	$-5(2)$	$16(2)$
$\mathrm{C}(7)$	$34(2)$	$57(2)$	$45(2)$	$-3(2)$	$10(2)$
$\mathrm{C}(8)$	$52(3)$	$83(14)$	$120(5)$	$-34(2)$	$38(3)$
$\mathrm{C}(9)$	$83(4)$	$91(4)$	$129(5)$	$-35(4)$	$20(4)$
$\mathrm{C}(10)$	$27(2)$	$48(2)$	$49(2)$	$-6(2)$	$8(2)$
$\mathrm{C}(11)$	$57(3)$	$69(3)$	$53(3)$	$3(2)$	$17(2)$
$\mathrm{C}(12)$	$79(4)$	$120(5)$	$63(3)$	$26(3)$	$26(3)$
$\mathrm{C}(13)$	$83(4)$	$157(6)$	$49(3)$	$-10(4)$	$13(3)$
$\mathrm{C}(14)$	$70(3)$	$105(4)$	$67(3)$	$-32(3)$	$5(3)$
$\mathrm{C}(15)$	$38(2)$	$61(3)$	$65(3)$	$-19(2)$	$7(2)$
$\mathrm{N}(1)$	$32(2)$	$42(2)$	$68(2)$	$-15(2)$	$7(2)$
$\mathrm{O}(2)$	$32(2)$	$74(2)$	$96(2)$	$-5(2)$	$18(2)$
$\mathrm{O}(3)$	$36(2)$	$52(2)$	$97(2)$	$-21(2)$	$21(2)$
$\mathrm{O}(1)$	$29(2)$	$61(2)$	$91(2)$	$-28(2)$	$3(1)$
Cl	$75(1)$	$52(1)$	$120(1)$	$-12(1)$	$23(1)$

Acknowledgement. The author are thankful to Prof. Hundal G. N. D. University Amritsar for X-ray analysis, Dr. Simon Fraser (University, British Columbia, Canada) and Mrs. B. P. Wakhlu (R.R.L Jammu) spectral analysis.

REFERENCES

[1] (a) Schultz, A. Chem. Rev 1973, 73, 385. (b) Emtenas, H.; Alderin, L.; Almqvist, F. J. Org. Chem. 2001, 66, 6756. (c) Stilli, J. R.; Barta, N. S. Studies in Natural Product Chemistry Elsevier Science, Amsterdam, 1966; vol. 18, pp 315 (d) Bradley, J. C.; Buchi, G., J. Org. Chem. 1976, 41, 699.
[2] Kelly, T.; Bell, S.; Osashi, N.; Amtrong-Chong, J. J. Am. Chem. Soc. 1988, 110, 6471.
[3] (a) Cox, R.; O' Hagan, D. J. Chem. Soc., Perkin Trans. I, 1991, 2537. (b) Mynderse, J. S.; Samlaska, S. K.; Fukuda, D. S.; DuBus, R. H.; Baker, P. J. J. Antibiot. 1985, 38, 1003.
[4] (a) O' Connor, S.; Somers, P. J. Antibiot. 1985, 38, 993. (b) Hunt, A. H.; Mynderse, J. S.; Samlaska, S. K.; Fukuda, D.; Maciak, G. M.; Kirst, H. A.; Occolowitz, J. L.; Swartzen-druber, J. K.; Jones, N. D. J. Antibiot. 1988, 41, 771.
[5] (a) Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88, 3888. (b)Aberg, V.; Hedenstrom, M.; Pinkner, J. S.; Hultgren, S. J.; Almqvist, F. Org. Biomal. Chem. 2005, 3, 3886.
[6] (a) Comins, D. L.; Nolan, J. M. Org. Lett. 2001, 3, 4255. (b) Potmesil,, M. Cancer Res., 1994, 54, 1431. (c) Rice-Evans, C. A.; Burdon, R. H., Free Radical Damage and its Control; Elsevier, Amsterdam, 1994.
[7] (a) Josien, H.; Curran, D. P. Tetrahedron 1997, 53, 8881. (b) Williams, D.; Lowder, P.; Gu, Y. G. Tetrahedron Lett. 1997, 38, 327.
[8] Kozkowski, A.; Campiani, G.; Sun, L. Q.; Wang, S.; saxena, A.; Doctor, B. J. Am. Chem. Soc. 1996, 118, 11357.
[9] (a) Aggarwal, V.; Singh, G.; Illa,H.; Jungrappa, H. Synthesis 1982, 214. (b) Datta, A.; Illa,H.; Junjappa, H. J. Org. Chem. 1990, 55, 5589. (c) Chuit, C.; Corriu, R. J. P.; Perz, R.; Reye, C. Tetrahedron 1986, 42, 2293. (d) Padwa, A.; Heidelbaugh, T. M.; Kuethe, J. T. J. Org. Chem. 2000, 65, 2368. (e) Gurski-Birchler, A.; Liu, F.; Liebeskind, L. S. J. Org. Chem.

1994, 59, 7737. (f) Tomas, M.; Suarez-Sobrino, A.; Gotor, V. Tetrahedron Lett. 1988, 29, 4855. (g) Takaoka, K.; Aoyama, T.; Shioiri, T. Tetrahedron Lett. 1996, 37, 4973. (h) Katrizky, A.; Belyakov, S.; Sorochinsky, A.; Henderson, A.; Chen, J. J. Org. Chem. 1997, 62, 6210. (i) Grosche, P.; Holtzel, A.; Walk, T. B., Trautwein, A. W.; Jung, G. Synthesis, 1999, 1961. (j) Linn, J. A.; Gerritz, S. W.; Handlon, A. L.; Hyman, C. E.; Heyer, D. Tetrahedron Lett. 1999, 40, 2227. (k) Brun, E.; Gil, S. Mesters,R.; Parra, M., Synthesis 2000, 273. (l) Paulvannan, K.; Chen, T., J. Org. Chem. 2000, 65, 6160. (m) Wagman, A. S.; Wnag, L.; Nuss, J. M. J. Org. Chem. 2000, 65, 9103. (n) Emtenas, H.; Ahlin, K.; Pinkner, J. S.; Hultgren, S. J.; Almqvist, F. J. Comb. Chem. 2002, 4, 630. (o) Cherry, K.; Abarbri, M.;

Parrian J. L.; Duehene, A. Tettrahedron. Lett., 2003, 44, 5791.
[10] Mohrle, H.; Neber,W. Tetrahedron, 1970, 26, 2953. (b) McKillop, A.; Boulton, A. Comprehensive Heterocyclic Chemistry, Pergamon Oxford, 1984, vol., 2, p 67.
[11] Hung, D. L.; Knight, S. D.; Woods,R. M.; Pinkner, J. S.; Hultgren, S. J. EMBOJ, 1996, 15, 3792.
[12] Jones, G. Org. React, 1967, 15, 204.
[13] Kumar, A., Koul, S., Razdan, T. K.; Kapoor, K. K. Tetrahedron Lett., 2006, 47, 837.
[14] Mukhopadhyay, C.; Becker, F. F. and banik, B. K. J. Chem. Res. Synop. 2001, 28 and refs. 10 and 11 therein and footnote 16.

